

Mathematics Specialist Units 1,2 Test 3 2017

Calculator Assumed Proof, Vector Proof, Circle Geometry

STU	In	FN	7	C	N	AA	
σ	J	יועדי		וכו	1 1 /	- N	1

DATE: Friday 19 May

TIME: 60 minutes

MARKS: 52

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (6 marks)

Consider the true statement:

"If quadrilateral ABCD is a rhombus, then it is a parallelogram"

(a) Write down the converse of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]

IF A PARALLELOGRAM THEN A RHOMBUS
FALSE

NOT ALL SIDES OF A PARALLELOGRAM EQUAL

(b) Write down the contrapositive of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]

IF NOT A PARALLELOGRAM THEN NOT A RHOMBUS

(c) Write down the inverse of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]

IF NOT A RHOMBUS THEN NOT A PARALLELOGRAM
FALSE

WHILE NOT A RHOMBUS IT COULD STILL BE A
PARALLELOGRAM

2. (8 marks)

In this diagram, AOB is the diameter of a circle, AC is a chord of the circle and CD is

perpendicular to the tangent AD.

(a) Prove
$$\triangle ABC$$
 is similar to $\triangle CAD$

(b) Hence show
$$(AC)^2 = AB.CD$$

[2]

[3]

$$\frac{ABC}{CAI} = \frac{AB}{AC}$$

$$\frac{AC}{CAI} = \frac{AB}{AC}$$

$$\frac{AC}{AC} = \frac{AB}{AC} \times CI$$

(c) Determine the radius of the circle when
$$AC = 15 cm$$
 and $AD = 12 cm$.

 C_1 $^2 + 12^2 = 15^2$

[3]

$$CI) = 9$$

$$AC^{2} = AB \times CI$$

$$IS^{2} = AB \times 9$$

$$225 = AB$$

$$25 = AB$$

$$\nabla = 12.5 \text{ cm}$$

Page 2 of 7

3. (6 marks)

 \overrightarrow{OABC} is a parallelogram with $\overrightarrow{OA} = \overrightarrow{a}$ and $\overrightarrow{OC} = \overrightarrow{c}$. M is the midpoint of the diagonal OB.

(a) Determine \overrightarrow{CM} in terms of \underline{a} and \underline{c}

$$CM = -C + \frac{1}{2}(C+a)$$

$$= \frac{a}{2} - \frac{C}{2}$$

(b) Determine \overrightarrow{CA} in terms of \underline{a} and \underline{c}

(c) Hence show that M lies on \overrightarrow{CA} and is the midpoint of \overrightarrow{CA} .

$$CM = \frac{1}{2}(a - c)$$

$$CA = a - c$$

[2]

[1]

[3]

4. (10 marks)

The circle with centre O and the circle with centre C meet externally at D so that DE is a common tangent and AB is a tangent to both circles.

(a) Prove
$$O$$
, D and C are collinear.

(b) Prove the common tangent at
$$D$$
 bisects AB .

Prove the common tangent at D bisects AB.

$$EB = EI$$

$$EA = EI$$

$$TO POINT OF TANGENCY$$

[3]

(c) Prove
$$\angle ADB = 90^{\circ}$$
. [4]

 $\triangle ADE \quad ISOSCELES \quad (FROM (b))$
 $\angle IDAE = \angle ADE = X \quad : \angle DEB = 2X \quad EXTERNAL ANGLE$
 $\angle LEBD = \angle LEDB = Y \quad : \angle DEA = 2Y \quad EXTERNAL ANGLE$
 $\angle LAED + \angle BED = 180 \quad 2x + 2y = 180$
 $x + y = 90 = \angle ADB$

5. (7 marks)

In the diagram, AP is a tangent to the circle, D is the point on BC produced such that AB is parallel to PD.

Prove that *ACDP* is a cyclic quadrilateral.

LABC = OC ANGLE IN ALT SEGMENT

$$LABC + LPDB = 180^{\circ} \qquad CO - INTERIOR ANGLES$$

$$X + LPDB = 180^{\circ}$$

$$LPDB = 180 - 30$$

OPPOSITE ANGLES OF QUADRILATERAL ACDP ARE SUPPLEMENTARY

. ACDP CYCLIC QUAD.

6. (7 marks)

In the diagram above, O is the centre of the circle. LMON and JKL are straight lines. Let $\angle JON = \beta$ and $\angle KLM = \theta$. The length KL is equal to the radius of the circle.

Prove that $\beta = 3\theta$.

7. (8 marks)

Parallelogram OABD has C on \overrightarrow{DB} such that $\overrightarrow{DC} = \frac{3}{5}\overrightarrow{DB}$ and E on \overrightarrow{OD} such that $\overrightarrow{OE} = \frac{2}{3}\overrightarrow{OD}$.

Let $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OD} = \underline{d}$, $\overrightarrow{OP} = h\overrightarrow{OC}$ and $\overrightarrow{AP} = k\overrightarrow{AE}$ where P is the point of intersection of \overrightarrow{AE} and \overrightarrow{OC} .

Determine the values of h and k.

